
1

G52CPP
C++ Programming

Lecture 19

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

This lecture and beyond

• This Lecture
– Multiple Inheritance

• This afternoon, 2pm – how to create programs fast
– Optional

• Thursday 2nd May, 4pm, Lecture 20
– Wrapping up (incl smart pointers)

• Friday 3rd May, 10am, Revision Lecture
– Revision and exam strategy

• Friday 3rd May, 2pm - Optional
– Any questions / examples
– What do you want to ‘revise’?

2

3

When is a duck an
instrument?

Multiple Inheritance

4

Multiple inheritance
• In Java you can implement multiple interfaces,

but only extend one class
• In C++ you can inherit from (extend) multiple

classes
• At times it makes sense to inherit from multiple

base classes
– Maybe something can be both a duck and an

instrument?
– You inherit all of the behaviour (i.e. function

implementations), not just the interface

• But be careful of multiple inheritance
– There are dangers, and confusing elements
– There may be easier ways (e.g. composition)

5

What re-use options are there?

• There are other ways to support re-use:
1. Composition/aggregation

– Models the ‘has a’ or ‘is a part of’ relationship
– Composition is a stronger form

• The ‘part’ only exists while the containing class exists

2. Inheritance
– ‘Is a’ or ‘is a type of’
– Implementation: Make the ‘type of’ a sub-class

3. Uses / association
– Implementation: Maintain a pointer or reference between

them, to get to the other object
• Create the other object separately, then set pointer to it
• Other object is separate – needs to be destroyed separately

6

Musical Duck

7

Base classes
class Duck

{

public:

// Constructor

Duck(int weight = 1)

: weight(weight)

{}

// Get the weight

int GetWeight() const

{ return weight; }

//protected:

int weight;

};

class Instrument

{

public:

Instrument(int weight = 1,

int volume = 1)

: weight(weight)

, volume(volume)

{}

int GetVolume() const

{ return volume; }

int GetWeight() const

{ return weight; }

//protected:

int volume;

int weight;

};

Two classes.
Both have a weight,
one has a volume.

8

Musical Duck 1 : Composition
class MusicalDuck1

{

public:

// Constructor

MusicalDuck1(

int weight = 1,

int volume = 2)

: d(weight)

, i(weight,volume)

{}

// Contains a ‘Duck’

Duck d;

// Contains ‘Instrument’

Instrument i;

// Get instrument volume

int GetVolume() const

{ return i.GetVolume(); }

// Get weights

int GetInstWeight() const

{ return i.GetWeight(); }

int GetDuckWeight() const

{ return d.GetWeight(); }

};

};

Data from contained objects is available
to the container object. Have to expose any

methods manually.

9

Musical Duck 2 : Inheritance
class MusicalDuck2

: public Duck

, public Instrument

{

public:

// Constructor

MusicalDuck2(

int weight = 1,

int volume = 2)

: Duck(weight)

, Instrument(weight,volume)

{ }

// GetVolume() is inherited

// and available

// GetWeight() is inherited

// (twice) and available

};

GetVolume() is available automatically

GetWeight() is available from both base
classes (i.e. twice)

How do we differentiate between them?

10

Musical Duck 1 : Composition
class MusicalDuck1

{

public:

// Constructor

MusicalDuck1(

int weight = 1,

int volume = 2)

: d(weight)

, i(weight,volume)

{ }

// Contains a ‘Duck’

Duck d;

// Contains ‘Instrument’

Instrument i;

…

};

MusicalDuck1 mduck1;

printf("Musical duck at %p\n",

&mduck1);

printf("Duck at %p\n",

&mduck1.d);

printf("Duck.weight at %p\n",

&mduck1.d.weight);

printf("Instrument at %p\n",

&mduck1.i);

printf("Instr.Volume at%p\n",

&mduck1.i.volume);

printf("Instr.Weight at %p\n",

&mduck1.i.weight);

Musical duck at 0x22ccd0
Duck at 0x22ccd0

Duck.weight at 0x22ccd0
Instrument at 0x22ccd4

Instr.Volume at 0x22ccd4
Instr.Weight at 0x22ccd8

11

Musical Duck 1 : Composition
class MusicalDuck1

{

public:

// Constructor

MusicalDuck1(

int weight = 1,

int volume = 2)

: d(weight)

, i(weight,volume)

{ }

// Contains a ‘Duck’

Duck d;

// Contains ‘Instrument’

Instrument i;

…

};

MusicalDuck Duck
Weight

Instrument
Volume
Weight

Musical duck at 0x22ccd0
Duck at 0x22ccd0

Duck.weight at 0x22ccd0
Instrument at 0x22ccd4

Instr.Volume at 0x22ccd4
Instr.Weight at 0x22ccd8

12

Musical Duck 2 : Inheritance
class MusicalDuck2

: public Duck

, public Instrument

{

public:

// Constructor

MusicalDuck2(

int weight = 1,

int volume = 2)

: Duck(weight)

, Instrument(weight,volume)

{ }

…

};

MusicalDuck2 mduck2;

printf("Musical duck at %p\n",

&mduck2);

printf("Duck at %p\n",

(Duck*)(&mduck2));

printf("Duck.weight at %p\n",

&mduck2.Duck::weight);

printf("Instrument at %p\n",

(Instrument*)(&mduck2));

printf("Instr.Volume at %p\n",

&mduck2.volume);

printf("Instr.Weight at %p\n",

&mduck2.Instrument::weight);

Musical duck at 0x22ccd0
Duck at 0x22ccd0

Duck.weight at 0x22ccd0
Instrument at 0x22ccd4

Instr.Volume at 0x22ccd4
Instr.Weight at 0x22ccd8

MusicalDuck

Important notes:

Important notes:
• The base-class

information is contained
within the sub-class
structure

• Casting a pointer can
change the address:
(Instrument*)(&mduck2)

• Composition may be
easier in many cases

• Main difference is that
you have to wrap/expose
the functions yourself

13

Duck
Weight

Instrument
Volume
Weight

If data or methods are available
from multiple base classes you
need to disambiguate

Use scoping to do this:
&mduck2.Duck::weight
&mduck2.Instrument::weight

14

Casting Pointers and References
• I used C-style casting to keep the code short

– DO NOT DO THIS!!!

• Use static_cast (for sub-class to base class) or
dynamic_cast (for base class to sub-class)
– Dynamic cast will check (at runtime) that the pointer really is to

an object of that type

• IMPORTANT: If you cast pointers or references when
multiple inheritance is being used, then addresses may
change
– Normally, casting a pointer just changes the type, but leaves the

address unchanged
– If you go to or from a second (or later) base class, the address

(pointer value) will change!
– If you go back again (to sub-class), the pointer value changes

back again (use dynamic cast if necessary, to check the type)

15

Shared base classes

16

Shared base classes
#include <cstdio>

struct Base { int i; };
struct Sub1a : public Base { Sub1a() {i=1;} };
struct Sub1b : public Base { Sub1b() {i=2;} };
struct Sub2 : public Sub1a, public Sub1b { };

int main()
{

printf("Sizes: %d %d %d %d\n",
sizeof(Base), sizeof(Sub1a),
sizeof(Sub1b), sizeof(Sub2));

Sub2 ob;
// printf("%d\n", ob.i); WRONG!!!

printf("%d\n", ob.Sub1a::i);
printf("%d\n", ob.Sub1b::i);

};

Output:
4 4 4 8
1
2

Base

Sub1b

Sub2

Sub1a

Base

Sub1b

Sub2

Sub1a

Base

Structure in
memory

Sub1 and Sub2 each have a copy of i ,
which they inherit. Sub2 has 2 copies

Base

17

Note: Size increased by 4 bytes, for the pointer to virtual base class

Virtual base classes
#include <cstdio>

struct Base { int i; };
struct Sub1a : virtual public Base { Sub1a() {i=1;} };
struct Sub1b : virtual public Base { Sub1b() {i=2;} };
struct Sub2 : public Sub1a, public Sub1b {};

int main()
{

printf("Sizes: %d %d %d %d\n",
sizeof(Base), sizeof(Sub1a),
sizeof(Sub1b), sizeof(Sub2));

Sub2 ob;
printf("%d\n", ob.i);
printf("%d\n", ob.Sub1a::i);
printf("%d\n", ob.Sub1b::i);

};

Output:
4 8 8 12
2
2
2

Base

Sub1b

Sub2

Sub1a

Base

Sub1b

Sub2

Sub1a

Structure in
memory

Can now use ob.i (only one copy)

18

Safe multiple inheritance
and alternatives

19

Multiple inheritance dangers

• Be careful if you use multiple inheritance
• Beware of:

– Inheriting the same names from multiple
base classes

– Inheriting the same base class twice,
through two different intermediate classes

• To resolve the problem:
– Use scoping operator :: to dis-ambiguate
– Or use virtual base classes, to keep one copy
– Or ensure that only one base class has any

data, or any non-abstract methods …

20

Abstract/pure-virtual base class

class PureVirtual
{

virtual void func1() = 0;
virtual int func2() = 0;
virtual double func3(int,double) = 0;

};

• No member data is specified
• All functions are pure virtual (i.e. abstract, = 0)

– MUST be implemented in any concrete sub-class
• This class acts like a Java interface and can be

used in the same way

No implementation is given
for any of these functions

They must be implemented
in concrete sub-classes

21

Should I Use Inheritance?
• Inheritance says this object IS an object of the other

type, not just that they have SOME commonality
• Do not assume that inheritance is always the answer

– Be sure that you really want ‘is-a’ and not ‘has-a’
– Aggregation or composition are often better options if you just

want to reuse some code
– Although you then have to re-implement function wrappers

• Do not assume that multiple inheritance is needed
– It is never necessary (but is sometimes useful)

• Do you need to treat different sub-class types as the
base class? (i.e. need to model ‘is-a’?)

• To be safe, adopt the Java way of having only one base
class any data or function implementations
– i.e. all but one base class is an ‘interface’

22

Moving on…

Quick creation of C++ programs
• This afternoon I will (optionally for you) show you how to generate

code and programs easily using MFC, the application wizard and
the class wizard for Windows program development:
– A Windows application with a ribbon
– A Single Document Interface application
– A Multi-Document Interface application
– A Dialog-based application (easy to create and edit with very little

knowledge)

• Even though it’s now over 20 years old, if you want to create a
windows application I suggest reading up on MFC. It is easy to do
basics with, with low overheads

• Note: Microsoft are pushing .NET now instead, with ‘managed C++
code’ – which makes sense

• Note that my views may be unusual: I tend to use C++ for the low-
level or fast work and other languages otherwise, so managed code
is of less use to me

23

Next lecture and beyond

• This afternoon, 2pm – how to create programs fast
– Optional

• Thursday 2nd May, 4pm, Lecture 20
– Wrapping up (incl smart pointers)

• Friday 3rd May, 10am, Revision Lecture
– Revision and exam strategy

• Friday 3rd May, 2pm - Optional
– Any questions / examples
– What do you want to ‘revise’?

24

